By Shannon Belew, Joel Elad

When you have an Internet business there is almost always no shortage of online tools to help manage and grow your business. This is certainly the case with content personalization for the web. Here are some favorite solutions that make it easy to use personalization on your site in an effort to increase conversions — and revenue!

  • Triblio: Considered an Account Based Marketing (ABM) tool, Triblio allows you to show personalized content and offers on your website to prospective buyers. You can provide your content to known and unknown website visitors, as well as show personalized content to targeted buyers (specific leads or accounts you are trying to influence and sell to). Triblio also works with e-mail or marketing automation platforms and Google AdWords.
  • Folloze: Account-based marketing is also a core capability for this personalization tool. But one of the things we really like about Folloze is the unique method for delivering personalized content to buyers. Folloze lets you create content boards that contain many different pieces of content all designed for a specific buyer. Think of it in terms of a Pinterest-style layout of a board (or online page) that groups your content in one easy to access place. The figure shows an example of a personalized board from the Folloze website. Another benefit of this tool is that it not only tracks who engages with or visits the board, but which pieces of content they interact with; and it lets you see who the prospective buyer is that is viewing the board. You can put a link to a Folloze board in an e-mail, on a page of your site, or just about anywhere.
  • Evergage: This content personalization tool monitors your site visitors’ intent in order to know which content to show them. In addition to tracking what places of offers get clicked, Evergage also tracks how much time is spent on each page, where the visitors’ computer mouse hovers, and how they scroll through a page. Looking at a host of data points as they occur on your site in real-time, or why a visitor is actually on the site, the tool uses machine-based learning to make recommendations and decisions on which content to deliver to the visitor. Evergage is designed for large e-tailers and other sites with heavy traffic, and can identify the users and what purchases or interests they’ve had on other sites and then recommend similar products or content to be shown on your site.
Create a custom board to deliver highly personalized content to buyers using Folloze.

There are plenty more web personalization and account based marketing tools available. And, you don’t have to start out using the tools, which can range from several hundred dollars per month to several thousand dollars monthly. These tools are a significant investment. But to compete online today, offering a one-to-one personalized approach to marketing with content and product offers is quickly becoming a necessity in order for you to remain competitive.

Visualization Program Protects Statistical Significance

In the modern age when Microsoft Excel lives on nearly every computer, and programs like Qlik® use advanced analytics to draw up graphical representations of big data, it’s easy for users to explore large data sets for exciting correlations and discoveries.

Visualizations in green represent a statistically significant finding. Findings in red are on “shaky statistical ground.” (Source: Kraska Lab/Brown University)Visualizations in green represent a statistically significant finding. Findings in red are on “shaky statistical ground.” (Source: Kraska Lab/Brown University)Unfortunately, as any statistician will tell you, the ability to ask unending questions of the same data series increases the chance for false discoveries. This idea is termed the “multiple hypothesis error.”

Luckily for those of us enamored with modern data visualization software, a team of researchers from Brown University may be on their way to resolving this error.

Tim Kraska, an assistant professor of computer science at Brown and a co-author of the research, describes the error. He explains, “these tools make it so easy to query data. You can test 100 hypotheses in an hour using these visualization tools. Without correcting for multiple hypothesis error, the chances are very good that you’ll come across a correlation that’s completely bogus.”

The researchers presented a new program called QUDE at the Association for Computing Machinery’s Special Interest Group on Management of Data (SIGMOD) 2017 conference in Chicago. QUDE adds real-time statistical safeguards to interactive data exploration systems.

The program highlights figures and feedback green or red to indicate their statistical significance or potential concern regarding the correlation.

Ordinarily, insignificant correlations would be caught by well-established protocols in statistics. The problem is, most of these techniques are used after-the-fact, and with visualization software, more and more users are not trained in statistics, they merely rely on the program to present them with methodologies.

“We don’t want to wait until the end of a session to tell people if their results are valid,” says Eli Upfal, a computer science professor at Brown and research co-author. Instead, Upfal explains, “you have a budget of how much false discovery risk you can take, and we update that budget in real time as a user interacts with the data.”

While this program, like any program, cannot guarantee complete accuracy, it’s a solid step in the direction for amateur statisticians.

Reducing The Environmental Impact On Mines

There are two main issues to consider when it comes to the environmental impacts of a mine:

  • The erection of plant, and its ongoing effect on its surrounds; and
  • How the site is rehabilitated after the mine has been decommissioned.

A fixed plant typically requires land being cleared, walls being built and roads being established. Then there is the plant assembly itself, which involves conveyor belts being constructed, material processing equipment put in place and draglines being set up, plus a range of peripheral considerations.

Sizing ore or minerals is a key component in mining operations. Setting up a permanent plant to allow processing and its affiliated operations can have a massive impact on the environment.

First, traditional plant used for high capacity crushing is enormous – it can be up to 32 metres high. This means that even before a site is set up, fixed plant has a large carbon footprint due to the amount of material used to construct it.

Then there is the construction of the plant onsite, which can take up large tracts of land due to the equipment itself plus support structures including buildings.

Also, there are the concrete or Reinforced Earth (RE) walls that are necessary for permanent plant. Not only can they have a negative impact on the environment, but they also take time to establish and require a lot of resources to complete.

Finally, there is the rehabilitation of the site. Costs can run into millions of dollars, depending on how much impact a mine has had on an area. If care has not been taken, or the plant has operated outside its agreed parameters, it means the approved remedies decided between state/local government bodies and the mining company might not be met.

Australian state and federal legislation puts the onus on mining companies to return a site to as close to its original condition as possible. The more permanent plant and installations that are set up initially, the more that has to be deconstructed and managed.

Minimising The Carbon Footprint

A piece of equipment that could help alleviate the impact on the environment is a Semi-Mobile Sizer Station from MMD.

For a start, they can be smaller than a permanent station – available in a range of modular designs, currently with a maximum height of 17 metres.

It also negates the need for concrete retaining walls because a fabricated truck bridge is used instead. Like the Semi-Mobile Sizer Station, the truck bridge can be deployed again and again, so there is no fixed plant to dispose of once the mine’s life expires.

Finally, there is no decommissioning of plant. With permanent plant there are concrete walls to be removed and earth landscaped. The area where the plant was located has to be rehabilitated with plants, trees, dirt and other stipulations as agreed.

With a Semi-Mobile Sizer Station, the plant is not in place long enough to cause as much impact. Furthermore, when it comes to moving to a different site, it is simply a case of picking up the unit on a transporter and moving it to its next location. There is no need for plant breakdown, crushing of concrete, or large fleets of trucks to take equipment away.

With modular construction and minimal maintenance, MMD equipment provides greener, more cost effective-solutions for today’s mines.

To read more on the environmental benefits of Semi-Mobile Sizer Stations, view MMD Australia’s whitepaper here.

Schneider releases system architecture for the mining sector

Schneider Electric has released EcoStruxure for the mining industry a new system architecture and platform that leverages innovative digital technologies and the industrial internet of things (IIoT) to allow companies to connect, collect, analyse and act on data in real time to improve safety, efficiency, reliability and sustainability.

Core technology layers

EcoStruxure integrates innovation at three levels:

  1. Connected Products: Field devices with embedded intelligence such as sensors, circuit breakers, meters, variable speed drives and process instrumentation provide the link to real-time data that is essential to higher-level control and decision-making.
  2. Edge Control: Real-time and runtime control systems are connected to field devices and collect data from them, analyse current conditions against goals and past performance, and make autonomous control decisions (or aid in operator decion-making) to improve process performance. At the heart of the edge control layer is the Modicon M580 Ethernet PAC (ePAC), the automation controller that uses open Ethernet standards to enable process efficiency, flexibility, and cybersecurity.
  3. Applications, Analytics, and Services: At the highest level of the EcoStruxure architecture, sophisticated problem solving and analysis is performed on an enterprise-wide basis to optimise business operations and maximise results. On this level, Schneider Electric provides a portfolio of software and associated services, including: Advanced predictive analytics for process and equipment; leading-edge virtual and augmented reality for operators and maintenance personnel; energy/ process optimisation and simulation; and integrated operations, planning and supply chain management.

Rob Moffitt, president of Schneider’s Mining, Minerals and Metals segment said, “With EcoStruxure, Schneider Electric is redefining automation and power connectivity as well as adding an unprecedented layer of software applications and services to help our customers get the most of their assets.

“By bridging IT and OT, EcoStruxure enables them to maximise the value of data and translate it into actionable intelligence for better business decisions.”

EcoStruxure provides added value in three key stages:

  1. Digital supply chain: through solutions that integrate resource to market activities, inventory management, and operations and planning.
  2. Next generation workforce: by providing technologies that attract and empower the next generation of workers and facilitate knowledge transfer, collaboration, situational awareness, mobility and remote operations efficiency.
  3. Operational excellence: with solutions that optimise and stabilise process performance and reduce energy usage, thereby achieving the highest level of performance and reliability from critical assets.

Moffitt added that EcoStruxure is not just another platform limited to asset performance analytics.

“It’s a complete set of digital technologies and applications that can improve the performance of the entire organisation, from people to operations to supply chain,” he concluded.



Through early stages of the development process, the driver remained in the truck cab but was hands free during the driving.

Through early stages of the development process, the driver remained in the truck cab but was hands free during the driving.


Two US companies – an aggregate operation and a robotics group – have been developing an aftermarket technology solution that could soon take the driver out of the haul truck. Therese Dunphy reports.

It’s no secret that equipment manufacturers have been working on autonomous trucks for many years. Typically, these large trucks operate as part of a fleet management and optimisation program at large mines. While intriguing, the technology has not yet been scaled for use in aggregates applications.

Now, Luck Stone, based in Richmond, Virginia, USA, with quarrying operations across three states, and Jaybridge Robotics, based in Cambridge, Massachusetts, have collaborated on a system that fits the unique needs of the quarrying market. This year they expect to have the prototype unit of a lead driver concept in place. This would allow a fleet of autonomous haul trucks to follow a single operator-driven truck throughout the load/haul/dump/return route. Eventually, they expect to see the driver out of the truck altogether.

Exploring options

Luck Stone has been on a roll with innovations over the past several years, including pioneering a remote control wheel loader that enhances safe operations at the quarry face and gives it access to a greater amount of reserves.

“As a business, we’re trying to make strides around the idea of being really intentional about innovation and creativity,” Luck Stone’s senior director of engineering and operational support Travis Chewning said.

“In fact, the company created an innovation process to develop ideas. We have a process, forum, and resources available so that when folks in the organisation have an idea, there is a place for them to go.”

When Luck Stone put a remote control loader into its first operation, Chewning said the company began to think about other opportunities.

“We were amazed at how quickly we were able to move and the success of that project. It got us asking, if we could remotely control a 988 loader, could we automate the loader? Could we take the next step? We didn’t have the ability to take that anywhere, but we were very curious about it.”

At the same time, Jaybridge Robotics was fresh from its success with autonomous agricultural equipment and was exploring other markets where automation made sense – including the aggregates industry.

“The mining industry is familiar with the concept and is starting to become familiar with the benefits,” Jaybridge Robotics president and CEO Jeremy Brown said. “And the equipment price is high, so the cost of autonomy equipment is a relatively small capital cost compared to the trucks.”

Brown met with an aggregates producer at MINExpo 2012 and spent much of 2013 visiting quarries around the United States to learn more about the needs of the market. “We became convinced that the opportunity was real and that the technology had just about gotten to the point where what an aggregates operation needs from an autonomous system was becoming cost-effective,” he said.

A mix of off-the-shelf hardware, along with proprietary software, comprises the control system that is being installed onto the haul truck.

A mix of off-the-shelf hardware, along with proprietary software, comprises the control system that is being installed onto the haul truck.

By using commodity, off-the-shelf parts, Jaybridge can take advantage of the rapid pace of development in technology and keep the parts cost down.

“Every high-end car now has lidar and radar and all the sensing technology you need,” Chewning said. “There are companies producing those by the hundreds of thousands, so the unit cost is just dropping amazingly fast. Jaybridge really sees an opportunity to leverage that.”

Determining the value proposition

One of the challenges is determining the trade-off between functionality and price. Chewning said Luck Stone was in conversations with Jaybridge for nearly a year, vetting capability and cost issues. They considered the following questions:

  • What kind of functionality would create value?
  • What price point would be considered feasible?
  • What are the performance requirements?
  • What are the safety requirements?
  • What equipment factors need to be considered?

“Within Luck Stone, the real motivation is that, when we looked at the future, there is no doubt this is coming.” Chewning said. “If you read any article about where autonomous cars are going, this is going to be part of how the world functions. We’d much rather be on the front end of that than the back end.”

Another consideration came from a lesson Luck Stone learned when it began automating plants in the early 1980s: automation improves consistency.

“We learned that it helps a plant operate in a more consistent process,” Chewning said. “It’s less expensive to operate, and it gives us the best product for the customer.”

Automated truck operations may well lead to lower maintenance costs, as their behaviour is modelled after an operation’s best truck operator, and driving technique impacts transmission shifts, brake wear, suspension life and tyre life, among other factors.

Chewning posed the question: “What would your performance be in an operation if every truck was functioning like your best operator? We definitely see there to be an efficiency gain.”

He said the deeper they went into the conversation, the more opportunities presented themselves.

Shown here is the driver’s wheel and dashboard in the prototype truck.

Shown here is the driver’s wheel and dashboard in the prototype truck.

For example, one discussion focused on night-time operations. Typically, reduced visibility leads operators to lower their speed, and productivity drops. Visibility concerns aren’t an issue for an automated truck, so it creates an opportunity for increased productivity.

While automation is not intended to replace people at Luck Stone operations, it does allow operators to focus on plant maintenance and efficiency.

“Our associates are our most valuable asset,” Chewning said. “We learned that, by automating our plants, we provided time for our operators to do other, more valuable, things.”

Although Luck Stone isn’t looking to downsize its workforce, automated trucks may help offset workforce challenges facing operators around the nation.

“It is progressively harder and harder to find operators,” Brown said. “The workforce across the country is urbanising, so it’s more challenging to get people to drive out of the city to operate quarrying equipment.”

Finding trained and reliable operators is a significant concern for some aggregates companies, he says.

Developing a prototype

Once they defined the various parameters, the two companies began to collaborate on prototypes. Prior to presenting the concept at an AGG1 presentation in 2015, the project had reached the point that a driver could drive the experimental truck from its cab. The driver used a joystick to control the technology installed on the haul truck.

Since then, Luck Stone and Jaybridge Robotics have been able to get the operator’s hands off the wheel, allowing the vehicle to drive autonomously and with repeatable performance along a pre-planned path. The operator was able to ‘land’ the truck accurately at designated locations. “We’ve taken the next step,” Brown said.

Chewning added: “Every time they come down, we incrementally experiment one step further. We’re taking baby steps, really just trying to get experiences under our belt. The steps now are to just keep building on that – building knowledge, experiences and confidence with the system so we can keep stretching it more and more.”

Future steps include working through issues such as having the truck operate at higher speeds and in reverse. Brown said they needed to work through the initial autonomous workflow, as well as user interfaces with the loader, crusher and lead driver.

Lidar technology, shown on this prototype, uses a laser beam to detect objects in the truck’s path.

Lidar technology, shown on this prototype, uses a laser beam to detect objects in the truck’s path.

“We hope to be doing lead driver, in the experimental context, where you still have an operator sitting in each of the autonomous trucks and serving as the safety system, keeping eyes on the road, eyes on the mirrors, and working out the workflow elements,” Brown said.Additional factors, such as integration of obstacle detection, will be necessary before taking the operator out of the cab.

Brown says they have to work through scenarios in which the truck must detect obstacles and ensure the sensors do so accurately.

“You have to put in place all of the safety protocols needed to operate not just self-driving, but actually unpopulated trucks in an area,” he said. “After we’ve been operating for a while, we should be able to characterise how quickly conditions on the ground change and how the lead driver changes the way they are driving.”

As they can identify how quickly those changes happen, they will learn the tempo of the route and gauge how long a driver can safely leave the vehicle.

“It’s going to be a journey of discovery to figure out how to get the driver out of the cab at all, and to figure out how frequently they have to get back in – and once there isn’t a lead driver, who monitors a remote console, so that if the truck sees an obstacle and stops for some reason, it can flag a human operator to address the situation.”

Once the lead driver comes out of the truck, operations will still need a person to work in a supervisory fashion, he says.

“The final step,” Brown said, “would be to give that remote human the ability to command the truck where to go on a map or some kind of computer interface rather than instructing the truck by driving the truck first.”

Looking to the future

To date, Jaybridge Robotics has worked exclusively with Luck Stone on the prototype.

Brown says that will continue until they work through the basic workflow process.

“It’s high cost and low return until it’s actually working,” he said of the development process.

“As soon as the first one is working at one quarry site, we’re going to want to install more at some other sites and make sure we can solve problems at more than one place.”

One of the challenges is to imagine all the variables. “We can only experience so many scenarios in so many months per year,” Chewning said. “The more experiences we have, the more Jaybridge can adapt and grow the system.

“They have been able to move forward so much faster than we would have ever expected. We have no reason to think that in the next year to 18 months we won’t have a prototype running unmanned in one of our quarries. That’s just awesome.”

The lead driver approach will likely be the first saleable model, Brown predicts. Once they have several out in the field, they can grow their experience and address variables from site to site, including how factors such as GPS and cellular coverage impact the system.

While Luck Stone’s involvement has been vital to the early phases of development, Chewning said the partners would welcome other operators to join the project and help to refine the technology. “The more industry engagement there is, the more it helps advance the thinking,” he said.

Article courtesy of Aggregates Manager. Visit:

More than a mobile phone

One of the first things often associated with Motorola is mobile phones, especially looking back not quite so long ago, when flip phones like the Motorola Razr dominated the market.

With an 85-year history, the company has always focused on communication – particularly radio communication – and has serviced a whole range of sectors from emergency departments, retail, hospitality and mining.

“One of the beauties of our business is not a lot of people actually see us day to day,” Martin Chappell, general manager Australia and New Zealand commercial channels, minerals and energy at Motorola Solutions, told Australian Mining.

“You don’t see our products and services out there but it’s probably touched your life today already and you’re not even aware of it.”

The company employs around 20,000 people, with its head office in Chicago and regional head offices in Melbourne and Singapore. It has been operating in Australia for more than 40 years.

While Motorola specialises in radio communications, Chappell said it aimed to extend into applications on various devices; expanding from pure hand-held or mobile radio devices and digitising its products to run on different platforms that are both consumer and industrial grade.

Communications challenges on site

Chappell said the biggest communications challenge for mine sites was continuity of service; getting enough coverage so management can talk to or locate their employees.

“In the last several years, applications through digitisation of radio products has allowed us to be able to locate people,” he said.

“I can use a specific example of a mine just out of Emerald in Queensland where they do blasting nearly every day. Obviously they need to know where their staff are before they go and blast.

“In the old days it was via voice, now it’s via voice as well as GPS tracking.”

As miners constantly look for ways to reduce downtime on site, being able to easily locate workers and equipment falls within that category. Proper communications services are also a key part of improving worker safety, which remains a top priority as companies continue to ensure every worker goes home safely after every shift.

The remoteness of mines presents another challenge for communications technology, particularly as miners continue to go further and further in search of mineral resources.

Chappell spoke about the company’s radio network – which he referred to as a ‘campus device’ – that could be placed on a required mine site, providing extended coverage.

“What it’s doing now is it’s also linking back to head offices,” Chappell said.

“So if we look at the IROC (Integrated Remote Operations Centre) system in WA, which is through BHP (Billiton), what that does is have a multitude of mines which all talk back to a central command system based in Perth. So they might be talking from the Pilbara or wherever back to Perth.”

The IROC system controls all BHP’s Pilbara operations, including its rail, stockyards and port facilities. The system also facilitates the growing shift toward automation in the mining industry.

“From that centralised position in Perth, they’ve got autonomous trucks going now, so there’s a lot of automation that’s coming from these centralised command centres,” Chappell said.

To further overcome the communications difficulties at remote sites, Chappell added that the company had devices that could switch to public networks to provide better coverage.

“Now you can have devices that can roam off of those campus sites or your mine sites right and onto public networks where you haven’t got coverage from your dedicated network,” he said.

“When you leave or go into town and you’re a manager, you still need to be in touch with the mine, which could be 200km away. You can roam onto the public network and use it as a radio [and] log back securely into your private system.”

Although Apple and Samsung currently rule the commercial consumer market, Chappell reinforced the inability of their phones to handle conditions on site. He mentioned the Motorola Lex L10, a hybrid mobile phone radio device that is more suitable, as it is rugged and longer-lasting.

“That’s a device you pick up and think it’s a smartphone,” he said. “Sure it’s a little bit thicker and a little bit more rugged but to the untrained eye, that’s not a big big difference. What that is, is essentially a product that has two-way radio on site and when you get to town, it’s your smart phone.”

Chappell added that the device is LTE (4G) capable and can use two sim cards.

“When you’re on your mine site you can use it to be on your lock down radio network or LTE network. When you’re in town you roam on to Vodaphone, Optus, Telstra, whatever it is and use the application to get back into your dedicated system on site.”

“It works in water and is dust proof,” he said, “you can drop it from three levels and it won’t break.

“Those are the sort of devices that we’re pushing down into the market in terms of mining.”

Communications across Australia

Chappell believes Australia is at the forefront globally when it comes to implementing wireless communications on site.

“This goes back 30-40 years for analog radio systems that were rolled out through lots of mines across Australia,” he said.

“Most of them now have been upgraded to digital for various reasons, mainly to get greater coverage, better voice quality and to bring on a suite of applications, and those applications deliver a multitude of benefits to the mining companies.

“So I think Australia has been early adopters in terms of heading down that digital road on two-way radio and enjoying the benefits that you get from that.”

In terms of the future of mining communications, Chappell considered more progress would happen through applications.

“I think it’s probably more around the application side, so the benefits that they’re getting out of apps in terms of worker safety, in terms of journey management – being able to track the workers from point A to point B – doing that autonomously so it’s automatic,” he said.

He also spoke of blast tones on site to aid workers.

“They can send out blast tones over the network [so] that people are warned that there’s actually blasting that’s taking place in certain areas,” he added.

“That’s where it’s all heading, and I think it’s heading towards workers being focused on their particular job at that point in time as opposed to having to muck around with technology to make sure it’s working. So there’s a lot of applications around that, in terms of keeping the safety of workers at the forefront.”

Motorola’s communications platforms

Chappell explained that Motorola has three different communications platforms; the P25, which is predominantly in the public safety arena; the Tetra, which is a European standard; and digital mobile radio (DMR).

While Motorola has a mining focus, it also has offerings for the oil and gas industry, such as the Tetra ATEX MTP8000EX portable radio, which has a higher standard to stop any chance of it sparking or igniting a fire.

Although it invests in all three of its communications platforms, one of its main focuses is its DMRs.

“There’s a big emphasis on digital mobile radios, and then from an LTE perspective, Motorola’s doing a lot of work around LTE in terms of infrastructure, to deliver that higher bandwidth data across mine sites or indeed across public safety.”

In terms of delivering the right communications on site, Chappell emphasised selecting platforms that are standards based and companies that have been in the business for a long time.

“Another way that they can ensure it is by working with the vendor and the vendors’ partner community who have been in the business for a long long time,” he added.

“You would also be looking towards a company and a partner who can not only deliver the products and the system from the outset, but support it through its lifespan, whether that be 10, 15 or 20 years.”

A glimpse ahead

While the company looks ahead at further developing its DMR range, it also has big plans for its software capabilities, especially in analytics and predicting events to increase worker safety.

“Motorola talks a lot about that in terms of its public safety business and how we are now analysing and predicting for crimes going to take place in a particular area. That is also starting to play into the mining space where we can predict a potential accident happening or collisions of vehicles,” Chappell said.

“So lots and lots of emphasis over the next year to 24 months around what those pretty significant software suites can do in predicting as well as getting a return on investment, journey management, route management, all those type of stuff that mining businesses are acutely aware of these days as they continue to further drive costs down and improve their ROI.”

The company has already seen a lot of success in its public safety business over the past year in the mining sector, securing contracts with BHP Billiton Mitsubishi Alliance (BHP BMA) in Queensland’s Bowen Basin, BHP’s rail business in WA’s Pilbara, Wesfarmers and a yet to be identified major international oil and gas producer.

With technology constantly evolving and upgrading, who knows what will be next for radio communications.


McCloskey Washing Systems – one of the world’s largest independent manufacturers of screening, crushing, washing and classifying plant and equipment – unveiled its SandStorm modular wash plants last month at CONEXPO-CONAGG 2017.

The Sandstorm 516, 620 and 824 variants incorporate feeding, screening, aggregate and sand washing on a single, compact modular chassis.

Able to efficiently process feeds of up to 550 tonnes per hour, the modular chassis-mounted scalping unit offers quarry operators a cost-effective and durable machine in an all-electric format.



Mining sector accounts for 15 per cent of Australia’s economy: Deloitte

A new Deloitte report has found the mining and mining equipment, technology and services (METS) sector has accounted for 15 per cent of Australia’s gross domestic product (GDP), highlighting its significant contribution to Australia’s economy.

The report, which was commissioned by the Minerals Council of Australia, found the mining and METS sector contributed $236.8 billion in 2015-16.

Both sectors support 1.1 million jobs nationwide – around 10 per cent of overall employment.

Although the sector makes a major contribution nationwide, there are particular regions where this is more significant, particularly in Western Australia.

The mining and METS sector accounted for a $37.8 billion economic contribution to WA’s Pilbara region – 88 per cent of total regional economic activity. It also accounted for nearly 94,000 jobs both directly and indirectly in the area.

This is followed by Queensland’s Bowen and Surat region, where the sectors made a $18.6 billion economic contribution (63 per cent of the region’s economic activity) and supported 99,700 jobs.

The sector also made a significant contribution to New South Wales’ Hunter region, accounting for $15.2 billion (34 per cent of total regional economic activity) and supporting 93,600 jobs.

The report also highlighted that a key feature of the mining sector was in its high exports.

During 1969, agriculture dominated Australia’s exports, with minerals and fuel making up 17 per cent. However, this has increased significantly, with minerals and energy exports accounting for 64 per cent of Australia’s exports in 2015-16 due to growing demand in Asia.

The report also focused on METS innovations such as semi-autonomous equipment, drones, data analytics software that have helped increase productivity, safety and yields on mine sites.

It indicated that Australia’s advantage in the mining and METS sector relies not only on innovation, but also on policies that reinforce competition, support skills growth and capital, and for companies to adapt to changing market conditions.

In order to sustain the mining and METS sector in the future, the report highlighted the need for the government to implement a range of initiatives including flexible workplaces, being open to foreign investment, a fair and competitive taxation system and continued support for collaboration between the sector and research groups.


Making condition-based monitoring a reality with the IoT

Condition-based monitoring is an essential component of predictive maintenance, recording changes in equipment that could lead to a fault. This is necessary across a wide range of industries, including manufacturing, mining, infrastructure, utilities and water.

With the advent of the Internet of Things (IoT), the measurable condition(s) of a machine can now be monitored continuously and in real time through a combination of connected devices and sensors, data networks, cloud storage and Big Data processing. All of these components work together to analyse data, which is easily communicated to the operator.

Without harnessing IoT solutions, data transportation can become a significant issue. According to Jas Singh, Systems and Solutions Manager at ifm efector, approximately 95 per cent of the data produced by sensors and other devices is unutilised or lost. For this reason, ifm has developed its Line Recorder series, which acts as a gateway to the IoT through a range of solutions for machine analytics, predictive maintenance and condition-based monitoring.

For condition-based monitoring in particular, ifm has developed SmartObserver, a software that provides an interface for users to undertake real-time maintenance (RTM). Within this RTM system, the customer can view both live and historical data, and perform data analytics. Potential applications for this software are endless; from conducting vibration monitoring on fans in a tunnel or centrifuge pumps on wind turbines, to monitoring truck driver fatigue, fuel levels and speeds.

One unique feature of SmartObserver is that it allows the user to remotely interact with their machines. This is made possible through an alarm management feature, where the user can receive an SMS, with the ability to acknowledge a particular alarm through text. What’s more, SmartObserver offers users the ability to interface to multiple devices, whether they be legacy devices or the latest device on the market.

Potential benefits for industry include:

  • Timely identification of possible damage or production stoppages, resulting in more efficient production and quality assurance
  • Energy savings and cost reduction by monitoring and customising machines’ energy usage
  • Access to more data than ever before, along with the ability to easily manipulate the data to discover important trends

These benefits are supported by a range of features such as:

  • Data acquisition and diagnosis
  • Visualisation and analysis
  • Alerting
  • Analysis and trending
  • Online access
  • Export data for testing and certification
  • Planning functions
  • Continuous condition monitoring
  • Intermittent condition monitoring
  • ERP connectivity

For more information about SmartObserver and how it could benefit your business, contact ifm efector.

Ifm efector
1300 365 088


Georgiou Group’s fleet was entrusted with moving 600,000m3 of sand, rock and limestone 1.5km between the cut and fill zones of the Alkimos project.


A major civil construction company charged with moving 600,000m3 of sand, rock and limestone on a land development project completed its assignment in advance and at a significant cost saving to its client – thanks to a combination of surveying, measurement and load and haul programs.

Georgiou Group is a national building construction, engineering and property development company that delivers major projects across Western Australia, Queensland, Victoria and New South Wales.

It is a low cost, high performance company that wanted to improve productivity and cost control on a land development project. The six-month project in Alkimos, about 50km north of Perth, Western Australia, involved moving 600,000m3 of sand, rock and limestone 1.5km between the cut and fill zones. The site measured 2km long by about 600m wide. Georgiou turned to SITECH Western Australia and Trimble Loadrite for help in understanding payloads, the movement of material and the productivity of operators and mass haul routes.

Augmented site solution

In the past, Georgiou had manually collected payload data to map to cost centres. The company had no access to real time data on productivity and material movement, leading to potentially inaccurate and sometimes delayed information.

On this project the Georgiou team adopted a range of Trimble solutions, including the 3D GCS900 Grade Control System, 2D Project Monitoring on haul assets and Loadrite X2350 excavator scales.

Data from this hardware was used by InsightHQ and VisionLink software to improve productivity, increase data transparency and accuracy, and therefore reduce costs. Georgiou used Business Center – Heavy Construction Edition (HCE) software for mass haul analysis and design creation. Utilisation of the SCS900 site controller software and unmanned aerial vehicles augmented the site solution.

Georgiou project manager Jim Ryan and Georgiou machine control lead Ian Hitsert led the project and began by equipping two 125-tonne excavators and one 85-tonne excavator with the Loadrite X2350 excavator scales and 2D VisionLink monitoring devices. The Loadrite X2350 excavator scales reported live data to InsightHQ for analysis and goal-setting. Monitoring devices were also fitted to 16 dump trucks.

The primary goals focused on productivity, tracking material moved, reducing the carbon footprint and keeping staff a safe distance from machines on the jobsite. Trimble’s VisionLink – a fleet, asset and site productivity management software – was then used to capture data from dump trucks, to be analysed and displayed through dashboards available on iPad. The Loadrite system gave excavator operators precise weight information to optimally load dump trucks. Trimble GCS900 GPS systems were used to track project progress and monitor material movement and the locations where material was cut and filled.

Georgiou also used Business Center – HCE’s Corridor Mass Haul module to create a digital terrain model of the Alkimos project site, define haul zones and perform a comprehensive mass haul analysis of the project.

Accurate, real time data

“The technology solution provided by Trimble and the working partnership developed with SITECH WA has allowed Georgiou to discover the benefits this technology can deliver to the business for earthworks projects of this size and nature,” Hitsert said. “The positive outcomes from this project have enabled Georgiou to utilise this technology to manage productivity on future projects. With a better understanding of the Trimble hardware and software, we are now challenging Trimble to provide additional functionality, to further improve productivity.”

Ryan estimated the cost savings to the project were in the order of 20 per cent, explaining one of the biggest advantages of the system was being able to determine and track the cost of moving a cubic metre of dirt on a daily basis. Project management could see how quickly trucks were being loaded and show operators their individual productivity data compared with other operators.

“We had two guys running two PC-1250 excavators and noticed production on one machine was slower than the other,” Ryan said. “We swapped these guys around to see if it was the excavator, and it wasn’t. With accurate data about payloads, we could see this kind of information immediately and easily start the conversation, as we had actual data to point to. We found ways to improve their performance, with more accountability through daily, even hourly, production check-ins.”

Operators running excavators and dump trucks were able to work as normal, loading material from the first cut zone and dropping it at the fill zone. The Trimble SNM940 Connected Site Gateway relayed production data to VisionLink and InsightHQ to gather payload information.

One of two PC-1250 excavators (rear) equipped with the Loadrite X2350 scales.

One of two PC-1250 excavators (rear) equipped with the Loadrite X2350 scales.
Trimble’s VisionLink was used to capture live data for analysis and display through dashboards.

Trimble’s VisionLink was used to capture live data for analysis and display through dashboards.

Ryan said data from the Loadrite scales centralised performance and productivity information across the range of machine sizes, brands and models.

Ryan and the equipment operators had real time information about load counts, idle times, time stamps when trucks are loaded, and travel time for material movement. From the office and using iPads in the field, supervisors could access information immediately and work with operators to improve productivity.

Ryan said on a daily basis supervisors could see project status, comparing a six-month project timeline to productivity to date. This replaced the old method of manually capturing data that could sometimes be inaccurate and days behind.

“Today, with Trimble Business Center – HCE and VisionLink, we have the real time cost and production status at the touch of a button,” said Ryan.

“We don’t have to go out and do any manual spreadsheets, collecting load counts for all machines and mapping them to cost centres. The technology doesn’t build the job for you, but we’ve taken full advantage of using the data to work more efficiently, and it has had a positive impact on the bottom line.”

To track the progress of material moved at the end of each month, the Georgiou team also ran Trimble’s UAV system to capture point cloud data and build a terrain model of the Alkimos site.

“Because earth was being hauled continuously, there was lag time from when we captured data from the UAV system to when we processed it and created reports,” Hitsert said. “In Business Center – HCE we would re-compute our corridor mass haul volumes to design and track progress in terms of overall volume. Essentially, we would re-compute mass haul, load it into VisionLink and back date it to the day of the UAV flight, which was a big plus for us because then we had a full picture in VisionLink of how much material was moved from that date forward.”

Cost, time savings

Within two weeks of using both Loadrite excavator scales and InsightHQ reports, Ryan and the team realised that although each truck was full by volume, they were under-loaded by weight due to lower density material, and could take a further eight tonnes each.

“We saw quickly from our haul routes and material production reports that loading each truck with 32 tonnes of material was inefficient,” Hitsert said. “To improve material moved per day, Georgiou’s internal plant department fitted steel plates around the tops of all dump trucks so we could carry 40 tonnes of rock, sand and limestone instead of 32. We never would have known this without the Trimble technology.

“As a result, and with the same haul fleet, we were actually able to finish moving 600,000m3 of material in four months, instead of six, providing significant cost and time savings to our client.”

Source: Trimble Loadrite